Microsoft
Software
Hardware
Network
Question : canonical equations where minima or maxima have second derivative = 0
Hi
I was wondering if you knew of any common equations where you can't tell from looking at the second derivative whether a turning point is a minima or maxima because the second derivative = 0. Is y = x^4 an example because it has a turning point at 0 and the second derivative is 0 at x=0? You can however tell y = x^4 is minima from the first derivative test of looking at signs of nearby values. Are there any other common examples?
thanks
Answer : canonical equations where minima or maxima have second derivative = 0
"Doesn't y = x^3 have a point of inflection?" yes that is it. I see now that you did not want it.
You have given the best example y = x^4
you can try
y=x^n where n can be any even integer
(the max or min gets flatter as n imcreases
Random Solutions
Query
Upgraded to Office 2007 last week, now having ton of issues
Process.waitFor() and InputStream
Convert mailbox to room
Creating a VMDK from live server
Date entry format error
How to get CDO.Message working in VBScript on Vista Business
Print email attachments from inbox folder
Outlook Sync multiple users and multiple computers
.htaccess Redirect Folder BUT Keeping Additional Strings / Variables?